連立方程式
連立方程式の解
\[
連立方程式 \ \ \ \
\left\{
\begin{array}{@{}1}
ax+by=\alpha\\
cx+dy=\beta
\end{array}
\right.
\ \ \ \
の場合
\]
\[
行列では \ \ \ \
\left[\begin{array}{cccccc}
a&b\\
c&d\\
\end{array}\right]
\left[\begin{array}{c}
x\\y\\
\end{array}\right]
=
\left[\begin{array}{c}
\alpha\\\beta\\
\end{array}\right]
\ \ \ \ \ \ \ \
そして
\left[\begin{array}{cccccc}
a&b\\
c&d\\
\end{array}\right]
= A
とする
\]
\[
解 =
\left[\begin{array}{c}
x\\y\\
\end{array}\right]
=
A^{-1}
\left[\begin{array}{c}
\alpha\\\beta\\
\end{array}\right]
\]